Problem

Source: St Petersburg Olympiad 2018, Grade 9, P4

Tags: combinatorics



On the round necklace there are $n> 3$ beads, each painted in red or blue. If a bead has adjacent beads painted the same color, it can be repainted (from red to blue or from blue to red). For what $n$ for any initial coloring of beads it is possible to make a necklace in which all beads are painted equally?