Problem

Source: IMO Shortlist 2017 G6

Tags: IMO Shortlist, geometry, Simple Statement



Let $n\ge3$ be an integer. Two regular $n$-gons $\mathcal{A}$ and $\mathcal{B}$ are given in the plane. Prove that the vertices of $\mathcal{A}$ that lie inside $\mathcal{B}$ or on its boundary are consecutive. (That is, prove that there exists a line separating those vertices of $\mathcal{A}$ that lie inside $\mathcal{B}$ or on its boundary from the other vertices of $\mathcal{A}$.)