Problem

Source: IMO 2018

Tags: IMO, imo 2018, geometry, IMO Shortlist, isogonal conjugates, symmedian



A convex quadrilateral $ABCD$ satisfies $AB\cdot CD = BC\cdot DA$. Point $X$ lies inside $ABCD$ so that \[\angle{XAB} = \angle{XCD}\quad\,\,\text{and}\quad\,\,\angle{XBC} = \angle{XDA}.\]Prove that $\angle{BXA} + \angle{DXC} = 180^\circ$. Proposed by Tomasz Ciesla, Poland