Problem

Source: USA TSTST 2018 Problem 2

Tags: combinatorics, graph theory, matchings



In the nation of Onewaynia, certain pairs of cities are connected by one-way roads. Every road connects exactly two cities (roads are allowed to cross each other, e.g., via bridges), and each pair of cities has at most one road between them. Moreover, every city has exactly two roads leaving it and exactly two roads entering it. We wish to close half the roads of Onewaynia in such a way that every city has exactly one road leaving it and exactly one road entering it. Show that the number of ways to do so is a power of $2$ greater than $1$ (i.e.\ of the form $2^n$ for some integer $n \ge 1$). Victor Wang