Problem

Source: USA TSTST 2018 Problem 1

Tags: algebra, functional equation



As usual, let ${\mathbb Z}[x]$ denote the set of single-variable polynomials in $x$ with integer coefficients. Find all functions $\theta : {\mathbb Z}[x] \to {\mathbb Z}$ such that for any polynomials $p,q \in {\mathbb Z}[x]$, $\theta(p+1) = \theta(p)+1$, and if $\theta(p) \neq 0$ then $\theta(p)$ divides $\theta(p \cdot q)$. Evan Chen and Yang Liu