Let $ABC$ be an acute-angled triangle inscribed in a circle $\mathcal C (O, R)$ and $F$ a point on the side $AB$ such that $AF < AB/2$. The circle $c_1(F, FA)$ intersects the line $OA$ at the point $A'$ and the circle $\mathcal C$ at $K$. Prove that the quadrilateral $BKFA'$ is cyclic and its circumcircle contains point $O$.