Color every vertex of $2008$-gon with two colors, such that adjacent vertices have different color. If sum of angles of vertices of first color is same as sum of angles of vertices of second color, than we call $2008$-gon as interesting. Convex $2009$-gon one vertex is marked. It is known, that if remove any unmarked vertex, then we get interesting $2008$-gon. Prove, that if we remove marked vertex, then we get interesting $2008$-gon too.
Problem
Source: St Petersburg Olympiad 2018, Grade 10, P2
Tags: combinatorics, geometry
13.12.2018 14:05
Let the $2009$-gon be $A_0A_1A_2...A_{2008}$ and let $\alpha_0 ,\alpha_1 ,..., \alpha_{2008} $ be the angles at $A_0,A_1,...,A_{2008}$, respectively . W.L.O.G let $A_0$ be the marked vertex. Note that the condition now translates to prove that the sum of angles at even indices must be equal to the sum of odd indices. If we remove any vertex with odd index $A_{2k+1}$ where $k \in \{1,2,3 ,...,1003 \}$ then the sum of angles colored with color $1$ and color $2$ are the same and we can get that : $$ \sum_{i=0}^{k} \alpha_{2i}+ \sum_{i=k+1}^{1003} \alpha_{2i+1}= \sum_{i=0}^{k-1} \alpha_{2i+1}+ \sum_{i=k}^{1004} \alpha_{2i} \;\;\;\;\;\;\;\; (1)$$ If we remove any vertex with even index $A_{2k}$ where $k \in \{1,2,3 ,...,1003 \}$ and do the same thing we get: $$\sum_{i=0}^{k-1} \alpha_{2i}+\sum_{i=k}^{1003} \alpha_{2i+1}=\sum_{i=0}^{k-1} \alpha_{2i+1}+ \sum_{i=k}^{1004} \alpha_{2i} \;\;\;\;\;\;\;\; (2)$$ $(1)-(2) $ gives us that $\boxed{\alpha_{2k}=\alpha_{2k+1}}$ for $k \in \{1,2,3 ,...,1003 \}$ If we remove $A_1$ we get that $$\alpha_0+\sum_{i=1}^{1003} \alpha_{2i+1}=\alpha_{2008}+\sum_{i=1}^{1003} \alpha_{2i} \Longleftrightarrow \boxed{\alpha_0=\alpha_{2008}}$$ If we remove $A_{2008}$ we get that $$\alpha_0+\sum_{i=1}^{1003} \alpha_{2i}=\alpha_1+\sum_{i=1}^{1003} \alpha_{2i+1} \Longleftrightarrow \boxed{\alpha_0=\alpha_1}$$ And we proved that $$\sum_{i=1}^{1004} \alpha_{2i}=\sum_{i=0}^{1003} \alpha_{2i+1} \;\;\;\; \blacksquare$$