Problem

Source: St Petersburg Olympiad 2018, Grade 11, P7

Tags: geometry



Points $A,B$ lies on the circle $S$. Tangent lines to $S$ at $A$ and $B$ intersects at $C$. $M$ -midpoint of $AB$. Circle $S_1$ goes through $M,C$ and intersects $AB$ at $D$ and $S$ at $K$ and $L$. Prove, that tangent lines to $S$ at $K$ and $L$ intersects at point on the segment $CD$.