Problem

Source: Russian 2007

Tags: counting, distinguishability, combinatorics proposed, combinatorics



There are $ 11$ coins, which are indistinguishable by sight. Nevertheless, among them there are $ 10$ geniune coins ( of weight $ 20$ g each) and one counterfeit (of weight $ 21$ g). You have a two-pan scale which is blanced when the weight in the left-hand pan is twice as much as the weight in the right-hand one. Using this scale only, find the false coin by three weighings.