Problem

Source: From SRMC

Tags: inequalities, search, inequalities proposed, SRMC 2002



I tried to search SRMC problems,but i didn't find them(I found only SRMC 2006).Maybe someone know where on this site i could find SRMC problems?I have all SRMC problems,if someone want i could post them, Here is one of them,this is one nice inequality from first SRMC: Let $ n$ be an integer with $ n>2$ and $ a_{1},a_{2},\dots,a_{n}\in R^{+}$.Given any positive integers $ t,k,p$ with $ 1<t<n$,set $ m=k+p$,prove the following inequalities: a) $ \frac{a_{1}^{p}}{a_{2}^{k}+a_{3}^{k}+\dots+a_{t}^{k}}+\frac{a_{2}^{p}}{a_{3}^{k}+a_{4}^{k}+\dots+a_{t+1}^{k}}+\dots+\frac{a_{n-1}^{p}}{a_{n}^{k}+a_{1}^{k}+\dots+a_{t-2}^{k}}+\frac{a_{n}^{p}}{a_{1}^{k}+a_{2}^{k}+\dots+a_{t-1}^{k}}\geq\frac{(a_{1}^{p}+a_{2}^{p}\dots+a_{n}^{p})^{2}}{(t-1) ( a_{1}^{m}+a_{2}^{m}+\dots+a_{n}^{m})}$ b)$ \frac{a_{2}^{k}+a_{3}^{k}\dots+a_{t}^{k}}{a_{1}^{p}}+\frac{a_{3}^{k}+a_{4}^{k}\dots+a_{t+1}^{k}}{a_{2}^{p}}+\dots+\frac{a_{1}^{k}+a_{2}^{k}\dots+a_{t-1}^{k}}{a_{n}^{p}}\geq\frac{(t-1)(a_{1}^{k}+a_{2}^{k}\dots+a_{n}^{k})^{2}}{( a_{1}^{m}+a_{2}^{m}+\dots+a_{n}^{m})}$