Problem

Source:

Tags: algebra, Vieta



Let $x,y,z$ be 3 different real numbers not equal to $0$ that satisfiying $x^2-xy=y^2-yz=z^2-zx$. Find all the values of $\frac{x}{z}+\frac{y}{x}+\frac{z}{y}$ and $(x+y+z)^3+9xyz$.