Problem

Source: Russian 2007

Tags: quadratics, algebra, polynomial, algebra proposed, Polynomials



Two quadratic polynomials $ f_{1},f_{2}$ satisfy $ f_{1}'(x)f_{2}'(x)\geq |f_{1}(x)|+|f_{2}(x)|\forall x\in\mathbb{R}$ . Prove that $ f_{1}\cdot f_{2}= g^{2}$ for some $ g\in\mathbb{R}[x]$.