Prove that the inequality $ (x^{k}-y^{k})^{n}<(x^{n}-y^{n})^{k}$ holds forall reals $ x>y>0$ and positive integers $ n>k$.
Source: Russian 2007
Tags: inequalities, logarithms, inequalities proposed
Prove that the inequality $ (x^{k}-y^{k})^{n}<(x^{n}-y^{n})^{k}$ holds forall reals $ x>y>0$ and positive integers $ n>k$.