Problem

Source: All-Russia 2018 Grade 9 P4

Tags: Russia, combinatorics



On the $n\times n$ checker board, several cells were marked in such a way that lower left ($L$) and upper right($R$) cells are not marked and that for any knight-tour from $L$ to $R$, there is at least one marked cell. For which $n>3$, is it possible that there always exists three consective cells going through diagonal for which at least two of them are marked?