Problem

Source: St. Petersburg MO 2017 Grade 11 P5

Tags: geometry



Given a tetrahedron $PABC$, draw the height $PH$ from vertex $P$ to $ABC$. From point $H$, draw perpendiculars $HA’,HB’,HC’$ to the lines $PA,PB,PC$. Suppose the planes $ABC$ and $A’B’C’$ intersects at line $\ell$. Let $O$ be the circumcenter of triangle $ABC$. Prove that $OH\perp \ell$.