Petya, Vasya and Tolya play a game on a $100\times 100$ board. They take turns (starting from Petya, then Vasya, then Tolya, then Petya, etc.) paint the boundary cells of the board (i.e., having a common side with the boundary of the board.) It is forbidden to paint the cell that is adjacent to the already painted one. In addition, it’s also forbidden to paint the cell which is symmetrical to the painted one, with respect to the center of the board. The player who can’t make the move loss. Can Vasya and Tolya, after agreeing, play so that Petya loses?