Problem

Source: St. Petersburg MO 2017 Grade 9 P2

Tags: geometry



Given a triangle $ABC$, there’s a point $X$ on the side $AB$ such that $2BX = BA + BC$. Let $Y$ be the point symmetric to the incenter $I$ of triangle $ABC$, with respect to point $X$. Prove that $YI_B\perp AB$ where $I_B$ is the $B$-excenter of triangle $ABC$.