Problem

Source: St. Petersburg MO 2017 Grade 9 P1

Tags: algebra



Sasha’s computer can do the following two operations: If you load the card with number $a$, it will return that card back and also prints another card with number $a+1$, and if you consecutively load the cards with numbers $a$ and $b$, it will return them back and also prints cards with all the roots of the quadratic trinomial $x^2+ax+b$ (possibly one, two, or none cards.) Initially, Sasha had only one card with number $s$. Is it true that, for any $s> 0$, Sasha can get a card with number $\sqrt{s}$?