Problem

Source: All-Russia 2018 Grade 9 P5

Tags: Game Theory, combinatorics



On the circle, 99 points are marked, dividing this circle into 99 equal arcs. Petya and Vasya play the game, taking turns. Petya goes first; on his first move, he paints in red or blue any marked point. Then each player can paint on his own turn, in red or blue, any uncolored marked point adjacent to the already painted one. Vasya wins, if after painting all points there is an equilateral triangle, all three vertices of which are colored in the same color. Could Petya prevent him?