Problem

Source: All-Russia 2018 Grade 9 P2

Tags: geometry, inscribed circles, homothety



Circle $\omega$ is tangent to sides $AB, AC$ of triangle $ABC$. A circle $\Omega$ touches the side $AC$ and line $AB$ (produced beyond $B$), and touches $\omega$ at a point $L$ on side $BC$. Line $AL$ meets $\omega, \Omega$ again at $K, M$. It turned out that $KB \parallel CM$. Prove that $\triangle LCM$ is isosceles.