Problem

Source: All-Russian MO 2018 Grade 11 P8

Tags: combinatorics, analytic geometry, grid



Initially, on the lower left and right corner of a $2018\times 2018$ board, there're two horses, red and blue, respectively. $A$ and $B$ alternatively play their turn, $A$ start first. Each turn consist of moving their horse ($A$-red, and $B$-blue) by, simultaneously, $20$ cells respect to one coordinate, and $17$ cells respect to the other; while preserving the rule that the horse can't occupied the cell that ever occupied by any horses in the game. The player who can't make the move loss, who has the winning strategy?