Problem

Source:

Tags: geometry, cyclic quadrilateral, geometric transformation, reflection, circumcircle



Let $ABCD$ be a cyclic quadrilateral. Let $H_{1}$ be the orthocentre of triangle $ABC$. Point $A_{1}$ is the image of $A$ after reflection about $BH_{1}$. Point $B_{1}$ is the image of of $B$ after reflection about $AH_{1}$. Let $O_{1}$ be the circumcentre of $(A_{1}B_{1}H_{1})$. Let $H_{2}$ be the orthocentre of triangle $ABD$. Point $A_{2}$ is the image of $A$ after reflection about $BH_{2}$. Point $B_{2}$ is the image of of $B$ after reflection about $AH_{2}$. Let $O_{2}$ be the circumcentre of $(A_{2}B_{2}H_{2})$. Lets denote by $\ell_{AB}$ be the line through $O_{1}$ and $O_{2}$. $\ell_{AD}$ ,$\ell_{BC}$ ,$\ell_{CD}$ are defined analogously. Let $M=\ell_{AB} \cap \ell_{BC}$, $N=\ell_{BC} \cap \ell_{CD}$, $P=\ell_{CD} \cap \ell_{AD}$,$Q=\ell_{AD} \cap \ell_{AB}$. Prove that $MNPQ$ is cyclic.