Problem

Source: 2017 Taiwan TST

Tags: combinatorics



There is a $2n\times 2n$ rectangular grid and a chair in each cell of the grid. Now, there are $2n^2$ pairs of couple are going to take seats. Define the distance of a pair of couple to be the sum of column difference and row difference between them. For example, if a pair of couple seating at $(3,3)$ and $(2,5)$ respectively, then the distance between them is $|3-2|+|3-5|=3$. Moreover, define the total distance to be the sum of the distance in each pair. Find the maximal total distance among all possibilities.