Problem

Source: 2017 Taiwan TST Round 2

Tags: geometry, angle bisector, circumcircle



Let $ABC$ be a triangle such that $BC>AB$, $L$ be the internal angle bisector of $\angle ABC$. Let $P,Q$ be the feet from $A,C$ to $L$, respectively. Suppose $M,N$ are the midpoints of $\overline{AC}$ and $\overline{BC}$, respectively. Let $O$ be the circumcenter of triangle $PQM$, and the circumcircle intersects $AC$ at point $H$. Prove that $O,M,N,H$ are concyclic.