Problem

Source: 2017 Taiwan TST

Tags: geometry



Given a circle and four points $B,C,X,Y$ on it. Assume $A$ is the midpoint of $BC$, and $Z$ is the midpoint of $XY$. Let $L_1,L_2$ be lines perpendicular to $BC$ and pass through $B,C$ respectively. Let the line pass through $X$ and perpendicular to $AX$ intersects $L_1,L_2$ at $X_1,X_2$ respectively. Similarly, let the line pass through $Y$ and perpendicular to $AY$ intersects $L_1,L_2$ at $Y_1,Y_2$ respectively. Assume $X_1Y_2$ intersects $X_2Y_1$ at $P$. Prove that $\angle AZP=90^o.$ Proposed by William Chao