$x^3+(\log_2{5}+\log_3{2}+\log_5{3})x=(\log_2{3}+\log_3{5}+\log_5{2})x^2+1$
Problem
Source: Moscow Olympiad 2018, Grade 11, P7
Tags: algebra, logarithms
07.04.2018 21:14
Brilliant problem! 1) Denote $a={{\log }_{2}}3,\text{ }b={{\log }_{3}}5,\text{ }c={{\log }_{5}}2$ Using the change of the basis of the logarithm, we have: 2) $abc=1$ and 3) $ab+bc+ca={{\log }_{2}}5+{{\log }_{3}}2+{{\log }_{5}}3$ 4) So our equation is: ${{x}^{3}}-(a+b+c){{x}^{2}}+(ab+bc+ca)x-abc=0\Leftrightarrow (x-a)(x-b)(x-c)=0$ 5) So the solutions there are: ${{x}_{1}}={{\log }_{2}}3,\text{ }{{x}_{2}}={{\log }_{3}}5,\text{ }{{x}_{3}}={{\log }_{5}}2$. Done
07.04.2018 21:56
Can't we explict it like $a=log3,b=log2,c=log5$ And use the identity $\frac{loga}{logb}$ for log a base b to get solution. By vista the problem is easy just check the cases $p+q+r=t$ ,$t=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}$ And $pqr=1$,$pq+qr+rp=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}$ it implies the solution Just realized the above solution is similar.
08.04.2018 09:30
Yes, the this solution it exactly the same that my solution!
08.04.2018 10:31
Just Viete's formulas.
08.04.2018 11:01
Yes, just Viete formulas and other 99% idea!