Let $ABC$ be a right-angled triangle with $\angle C = 90^{\circ}$, $K$, $L$, $M$ be the midpoints of sides $AB$, $BC$, $CA$ respectively, and $N$ be a point of side $AB$. The line $CN$ meets $KM$ and $KL$ at points $P$ and $Q$ respectively. Points $S$, $T$ lying on $AC$ and $BC$ respectively are such that $APQS$ and $BPQT$ are cyclic quadrilaterals. Prove that
a) if $CN$ is a bisector, then $CN$, $ML$ and $ST$ concur;
b) if $CN$ is an altitude, then $ST$ bisects $ML$.
This is just PoP with similarity/congurency. For part (a) use Ceva's theorem after that.
For part (b) after that use symmetry or a one-liner cartesian bash.
Apply $CA \cdot CS=CP \cdot CQ=CB \cdot CT$ in both parts. In part (a), we obtain $\triangle CST$ is the reflection of $\triangle CLM$ in the angle bisector of angle $C$. In part (b), we obtain that if $X$ is the mid-point of $ML$ then $\angle CXS=\angle CXT=90^{\circ}$. Effectively, both parts fall.
$\textbf{14 a}$
$LK \|\ AC, \ MK \|\ BC$ so $MKLC$ is a rectangle.
Next $CT \cdot CB = CP \cdot CQ = CS \cdot CA$. Using ratios we get $MSLT$ is cyclic.
$\angle QCL= \angle LQC = 45^{\circ}$ so $CQL$ is a right isosceles triangle.
As $QL$ is the perpendicular bisector of $BC$ hence $\triangle QCB$ is right isosceles.
Then $\angle PQB = 90^{\circ}= \angle PTB$.
$L,S$ are symmetric wrt to the angle bisector so $CSQL$ is a square.
Also $M,T$ are symmetric wrt to the angle bisector $\Longrightarrow SMTL$ is an isosceles trapezoid. We are done by the trapezoid lemma.
anantmudgal09 wrote:
Apply $CA \cdot CS=CP \cdot CQ=CB \cdot CT$ in both parts. In part (a), we obtain $\triangle CST$ is the reflection of $\triangle CLM$ in the angle bisector of angle $C$. In part (b), we obtain that if $X$ is the mid-point of $ML$ then $\angle CXS=\angle CXT=90^{\circ}$. Effectively, both parts fall.
Can someone elaborate this solution to part b?
For both apply PoP first, to get $CS$ and $CT$.
For (a), $MLST$ becomes cyclic and $MS=LT$ gives congruence. Let $R$ be $ML \cap ST$. Then, use corresponding parts to establish congruence between triangle $CSR$ and $CLR$. By this $R$ lies on angle bisector.
For (b), Let line parallel to $AB$ through $T$ meet $AC$ at $J$. Computation gives $(C,M;S,J)=-1$. Now, let $R= ST \cap ML$.
Taking a projection, $-1=(C,M;S,J)\stackrel{T}{=} (L,M;R,P_{\infty; ML})$. Result follows. $\square$
[asy][asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(10.cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -9.22, xmax = 15.18, ymin = -5.24, ymax = 8.28; /* image dimensions */
pair A = (0.,5.), B = (9.,0.), C = (0.,0.), M = (0.,2.5), K = (4.5,2.5), L = (4.5,0.), Q = (4.5,4.5), P = (2.5,2.5), T = (2.5,0.), X = (1.6071428571428572,1.6071428571428572);
draw(A--B--C--cycle, linewidth(1.));
/* draw figures */
draw(A--B, linewidth(1.));
draw(B--C, linewidth(1.));
draw(C--A, linewidth(1.));
draw(M--K, linewidth(1.));
draw(L--Q, linewidth(1.));
draw(C--Q, linewidth(1.));
draw(P--T, linewidth(1.));
draw((0.,4.5)--Q, linewidth(1.));
draw((0.,4.5)--T, linewidth(1.));
draw(M--L, linewidth(1.));
draw((0.,4.5)--P, linewidth(1.));
draw(Q--B, linewidth(1.));
/* dots and labels */
dot(A,dotstyle);
label("$A$", (0.08,5.2), NE * labelscalefactor);
dot(B,dotstyle);
label("$B$", (9.14,-0.38), NE * labelscalefactor);
dot(C,dotstyle);
label("$C$", (-0.36,-0.36), NE * labelscalefactor);
dot(M,linewidth(4.pt) + dotstyle);
label("$M$", (-0.36,2.5), NE * labelscalefactor);
dot(K,linewidth(4.pt) + dotstyle);
label("$K$", (4.58,2.64), NE * labelscalefactor);
dot(L,linewidth(4.pt) + dotstyle);
label("$L$", (4.5,-0.4), NE * labelscalefactor);
dot(Q,linewidth(4.pt) + dotstyle);
label("$Q$", (4.58,4.66), NE * labelscalefactor);
dot(P,linewidth(4.pt) + dotstyle);
label("$P$", (2.6,2.14), NE * labelscalefactor);
dot(T,linewidth(4.pt) + dotstyle);
label("$T$", (2.24,-0.46), NE * labelscalefactor);
dot((0.,4.5),linewidth(4.pt) + dotstyle);
label("$S$", (-0.34,4.28), NE * labelscalefactor);
dot(X,linewidth(4.pt) + dotstyle);
label("$X$", (1.44,1.14), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy][/asy]
Claim: $SQLC,TPMC$ is square.
Proof: As $P$ lies on $MK$, $PC=PA$. $\angle APQ = \angle ACP+\angle CAP=2\cdot \angle ACP=90^{\circ}$. So $SQ\perp AC$. Also, $QC$ bisects $\angle SCL$, so $SQLC$ is square. Similarly $MPTC$ is square.
Main problem: Let $X=ML\cap ST$. Consider $r$ to be the reflection about $CN$. From the claim, $r$ maps $L$ to $S$ and $T$ to $M$. So, $r$ maps $ML$ to $TS$ and $TS$ to $ML$. Suppose $X'$ is the reflection of $X$ about $CN$. So, $r$ takes $X=ML\cap TS$ to $X'=TS\cap ML=X$. So, $X=X'\Rightarrow X$ lies on $CN$. So, $ML,ST,CN$ concur.
[asy][asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(10.cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -8.78, xmax = 15.62, ymin = -3.5, ymax = 10.02; /* image dimensions */
pair A = (0.,5.), B = (7.,0.), C = (0.,0.), L = (3.5,0.), M = (0.,2.5), K = (3.5,2.5), Q = (3.5,4.9), P = (1.7857142857142856,2.5), T = (2.6428571428571437,0.);
draw(A--B--C--cycle, linewidth(1.));
/* draw figures */
draw(A--B, linewidth(1.));
draw(B--C, linewidth(1.));
draw(C--A, linewidth(1.));
draw(M--K, linewidth(1.));
draw(Q--L, linewidth(1.));
draw(Q--C, linewidth(1.));
draw(P--T, linewidth(1.));
draw((2.3648648648648645,3.3108108108108105)--L, linewidth(1.));
draw(Q--(0.,3.7), linewidth(1.));
draw(M--(2.3648648648648645,3.3108108108108105), linewidth(1.));
draw(Q--B, linewidth(1.));
draw(B--P, linewidth(1.));
draw(P--A, linewidth(1.));
draw(A--Q, linewidth(1.));
/* dots and labels */
dot(A,dotstyle);
label("$A$", (-0.3,5.14), NE * labelscalefactor);
dot(B,dotstyle);
label("$B$", (7.1,-0.32), NE * labelscalefactor);
dot(C,linewidth(4.pt) + dotstyle);
label("$C$", (0.08,-0.36), NE * labelscalefactor);
dot(L,linewidth(4.pt) + dotstyle);
label("$L$", (3.52,-0.36), NE * labelscalefactor);
dot(M,linewidth(4.pt) + dotstyle);
label("$M$", (-0.44,2.4), NE * labelscalefactor);
dot(K,linewidth(4.pt) + dotstyle);
label("$K$", (3.58,2.66), NE * labelscalefactor);
dot(Q,linewidth(4.pt) + dotstyle);
label("$Q$", (3.64,5.06), NE * labelscalefactor);
dot((2.3648648648648645,3.3108108108108105),linewidth(4.pt) + dotstyle);
label("$N$", (2.54,3.2), NE * labelscalefactor);
dot(P,linewidth(4.pt) + dotstyle);
label("$P$", (1.6,1.9), NE * labelscalefactor);
dot((0.,3.7),linewidth(4.pt) + dotstyle);
label("$S$", (-0.32,3.54), NE * labelscalefactor);
dot(T,linewidth(4.pt) + dotstyle);
label("$T$", (2.5,-0.36), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy][/asy]
If $AC=BC$, it is same as part (a). So, assume $AC\neq BC$.
Claim: $PT||NL$ and $QS||NM$.
Proof: As $Q$ lies on $KL$, $QC=QB\Rightarrow \angle CPT=\angle CBQ=\angle QCB=90^{\circ}-\angle B$. As $L$ is the midpoint of the hypotenuse $BC$ of triangle $BNC$, $LN=LC$. So, $\angle CNL=90^{\circ}-\angle B$.
Proved.
Main Problem: We'll proceed by coordinate geometry. Let $C=(0,0),A=(0,a),B=(b,0)$. So, $L=\left(\frac{b}{2},0\right),M=\left(0,\frac{a}{2}\right)$.
As $CN\perp AB$, slope of $CN$ is $\frac{b}{a}$. So, the equation of $CN$ is $y=\frac{b}{a}x$. We know the equation of line $AB: y=\frac{-a}{b}x+a$. Equating the equations we get, $N=\left(\frac{a^2b}{a^2+b^2},\frac{ab^2}{a^2+b^2}\right)$.
Equation of $CN$ is $y=\frac{b}{a}x$. So, $Q=\left(\frac{b}{2},\frac{b^2}{2a}\right),P=\left(\frac{a^2}{2b},\frac{a}{2}\right)$.
Let $T=(x_0,0)$. From the claim $TP||NL$. The slope of $NL$ is $\frac{\frac{b^2a}{a^2+b^2}}{\frac{a^2b}{a^2+b^2}-\frac{b}{2}}=\frac{2b^2a}{2a^2-a^2b-b^3}=\frac{2ab}{a^2-b^2}$. Slope of $PT=\frac{\frac{a}{2}}{\frac{a^2}{2b}-x_0}.$ So, $x_0=\frac{a^2+b^2}{4b}$. So, $T=\left(\frac{a^2+b^2}{4b},0\right), S=\left(0,\frac{a^2+b^2}{4a}\right)$.
Let $X=ML\cap ST$. We have the equations of lines $ML$ and $ST$ as $y=\frac{-a}{b}x+\frac{a}{2}$ and $y=\frac{-b}{a}x+\frac{a^2+b^2}{4a}$ respectively.
Equating, we get \[x=\frac{\frac{b^2-a^2}{4a}}{\frac{b^2-a^2}{ab}}=\frac{b}{4}.\]So, $y=\frac{a}{4}$ which gives $X$ as the midpoint of $ML$.
Proved.
For the part (a), first show that $PT \perp BC, QS \perp AC$ by simple angle chasing and then (trivially) $MT \parallel SL$. Hence, $\triangle SLC, \triangle TMP$ are homothetic and then we are done.
For the part (b), first show that $BTSA$ is cyclic and then using angle chasing, it all boils down to showing that $TCK$ is isosceles and $TO \perp KC$ (where $O=TS \perp KC$) and so you get that $ST$ bisects $KC$ and so it also bisects $KC$.