Problem

Source: Sharygin 2018

Tags: geometry



Let $CH$ be the altitude of a right-angled triangle $ABC$ ($\angle C = 90^{\circ}$) with $BC = 2AC$. Let $O_1$, $O_2$ and $O$ be the incenters of triangles $ACH$, $BCH$ and $ABC$ respectively, and $H_1$, $H_2$, $H_0$ be the projections of $O_1$, $O_2$, $O$ respectively to $AB$. Prove that $H_1H = HH_0 = H_0H_2$.