Problem

Source: Central American Olympiad 2000, problem 5

Tags: trigonometry



Let $ ABC$ be an acute-angled triangle. $ C_{1}$ and $ C_{2}$ are two circles of diameters $ AB$ and $ AC$, respectively. $ C_{2}$ and $ AB$ intersect again at $ F$, and $ C_{1}$ and $ AC$ intersect again at $ E$. Also, $ BE$ meets $ C_{2}$ at $ P$ and $ CF$ meets $ C_{1}$ at $ Q$. Prove that $ AP=AQ$.