Problem

Source: Central American Olympiad 2000, problem 4

Tags:



Write an integer on each of the 16 small triangles in such a way that every number having at least two neighbors is equal to the difference of two of its neighbors. Note: Two triangles are said to be neighbors if they have a common side. [asy][asy]size(100); pair P=(0,0); pair Q=(2, 2*sqrt(3)); pair R=(4,0); draw(P--Q--R--cycle); pair B=midpoint(P--Q); pair A=midpoint(P--B); pair C=midpoint(B--Q); pair E=midpoint(Q--R); pair D=midpoint(Q--E); pair F=midpoint(E--R); pair H=midpoint(R--P); pair G=midpoint(R--H); pair I=midpoint(H--P); draw(A--I); draw(B--H); draw(C--G); draw(I--D); draw(H--E); draw(G--F); draw(C--D); draw(B--E); draw(A--F);[/asy][/asy]