Problem

Source: Central American Olympiad 2000, problem 2

Tags: modular arithmetic



Determine all positive integers $ n$ such that it is possible to tile a $ 15 \times n$ board with pieces shaped like this: [asy][asy]size(100); draw((0,0)--(3,0)); draw((0,1)--(3,1)); draw((0,2)--(1,2)); draw((2,2)--(3,2)); draw((0,0)--(0,2)); draw((1,0)--(1,2)); draw((2,0)--(2,2)); draw((3,0)--(3,2)); draw((5,0)--(6,0)); draw((4,1)--(7,1)); draw((4,2)--(7,2)); draw((5,3)--(6,3)); draw((4,1)--(4,2)); draw((5,0)--(5,3)); draw((6,0)--(6,3)); draw((7,1)--(7,2));[/asy][/asy]