Problem

Source: 2018 Canadian Mathematical Olympiad - P5

Tags: number theory



Let $k$ be a given even positive integer. Sarah first picks a positive integer $N$ greater than $1$ and proceeds to alter it as follows: every minute, she chooses a prime divisor $p$ of the current value of $N$, and multiplies the current $N$ by $p^k -p^{-1}$ to produce the next value of $N$. Prove that there are infinitely many even positive integers $k$ such that, no matter what choices Sarah makes, her number $N$ will at some point be divisible by $2018$.