Problem

Source: 2018 Canadian Mathematical Olympiad - P1

Tags: combinatorics



Consider an arrangement of tokens in the plane, not necessarily at distinct points. We are allowed to apply a sequence of moves of the following kind: select a pair of tokens at points $A$ and $B$ and move both of them to the midpoint of $A$ and $B$. We say that an arrangement of $n$ tokens is collapsible if it is possible to end up with all $n$ tokens at the same point after a finite number of moves. Prove that every arrangement of $n$ tokens is collapsible if and only if $n$ is a power of $2$.