Problem

Source: 2006 singapore NTST

Tags: number theory



Let $n$ be a positive integer such that the sum of all its positive divisors (inclusive of $n$) equals to $2n + 1$. Prove that $n$ is an odd perfect square. related: https://artofproblemsolving.com/community/c6h515011 https://artofproblemsolving.com/community/c6h108341 (Putnam 1976) https://artofproblemsolving.com/community/c6h368488 https://artofproblemsolving.com/community/c6h445330 https://artofproblemsolving.com/community/c6h378928