Problem

Source: 2006 singapore NTST

Tags: Inequality, rearrangement inequality



Let n be an integer greater than 1 and let $x_1, x_2, . . . , x_n$ be real numbers such that $|x_1| + |x_2| + ... + |x_n| = 1$ and $x_1 + x_2 + ... + x_n = 0$ Prove that $\left| \frac{x_1}{1}+\frac{x_2}{2}+\cdots+\frac{x_n}{n} \right| \leq \frac{1}{2} \left(1-\frac{1}{n}\right)$