$10$ distinct numbers are given. Professor Odd had calculated all possible products of $1$, $3$, $5$, $7$, $9$ numbers among given numbers, and wrote down the sum of all these products. Similarly, Professor Even had calculated all possible products of $2$, $4$, $6$, $8$, $10$ numbers among given numbers, and wrote down the sum of all these products. It appears that Odd's sum is greater than Even's sum by $1$. Prove that one of $10$ given numbers is equal to $1$.