Prove that $\dfrac {x^2+1}{(x+y)^2+4 (z+1)}+\dfrac {y^2+1}{(y+z)^2+4 (x+1)}+\dfrac {z^2+1}{(z+x)^2+4 (y+1)} \ge \dfrac{1}{2} $ for all positive reals $x,y,z$
Problem
Source:
Tags: inequalities
09.02.2018 21:50
09.02.2018 22:00
@above... Brilliant solution!
09.02.2018 22:01
adhikariprajitraj wrote: @above... Brilliant solution! Thank you
09.02.2018 22:37
30.03.2020 15:41
KereMath wrote: Prove that $$\dfrac {x^2+1}{(x+y)^2+4 (z+1)}+\dfrac {y^2+1}{(y+z)^2+4 (x+1)}+\dfrac {z^2+1}{(z+x)^2+4 (y+1)} \ge \dfrac{1}{2} $$for all positive reals $x,y,z$ For positive real numbers $x, y, z$ , $xyz=1$.Prove that $$\frac{1}{(x+1)^2 + y^2 + 1} + \frac{1}{(y+1)^2 + z^2 + 1} + \frac{1}{(z+1)^2 + x^2 + 1} \leq 1$$
10.09.2023 16:34
sqing wrote: KereMath wrote: Prove that $$\dfrac {x^2+1}{(x+y)^2+4 (z+1)}+\dfrac {y^2+1}{(y+z)^2+4 (x+1)}+\dfrac {z^2+1}{(z+x)^2+4 (y+1)} \ge \dfrac{1}{2} $$for all positive reals $x,y,z$ For positive real numbers $x, y, z$ , $xyz=1$.Prove that $$\frac{1}{(x+1)^2 + y^2 + 1} + \frac{1}{(y+1)^2 + z^2 + 1} + \frac{1}{(z+1)^2 + x^2 + 1} \leq 1$$ $x=\frac{a}{b};y=\frac{b}{c};z=\frac{c}{a}$ kills