Problem

Source: Netherlands TST for IMO 2017 day 3 problem 2

Tags: Sequences, algebra



let $a_1,a_2,...a_n$ a sequence of real numbers such that $a_1+....+a_n=0$. define $b_i=a_1+a_2+....a_i$ for all $1 \leq i \leq n$ .suppose $b_i(a_{j+1}-a_{i+1}) \geq 0$ for all $1 \leq i \leq j \leq n-1$. Show that $$\max_{1 \leq l \leq n} |a_l| \geq \max_{1 \leq m \leq n} |b_m|$$