Let $ABC$ be a triangle, let $M$ be the midpoint of $AB$, and let $N$ be the midpoint of $CM$. Let $X$ be a point satisfying both $\angle XMC = \angle MBC$ and $\angle XCM = \angle MCB$ such that $X$ and $B$ lie on opposite sides of $CM$. Let $\omega$ be the circumcircle of triangle $AMX$. $(a)$ Show that $CM$ is tangent to $\omega$. $(b)$ Show that the lines $NX$ and $AC$ intersect on $\omega$
Problem
Source: Netherlands TST for IMO 2017 day 1 problem 4
Tags: geometry
01.02.2018 20:11
For $(b)$ let $D$ be the midpoint of $BC$ and $G=AC \cap XN$. Noting $\triangle BMC \cap D \simeq \triangle MXC \cap N$ and $MD \parallel AC$ we get: $$\measuredangle GXM=\measuredangle NXM=\measuredangle DMB=\measuredangle CAB=\measuredangle GAM$$So $AGXM$ are concyclic as desired.
01.02.2018 21:26
For $(a)$, Let $CX \cap \omega=F \neq C$. Let the feet of the perpendiculars from $F,A$ to $CM$ be $K,L$ respectively. $$\measuredangle AFC=\measuredangle AFX=\measuredangle AMX=\measuredangle AMC-\measuredangle XMC=\measuredangle CXM-\measuredangle XMC=\measuredangle MCX=\measuredangle MCF$$So $AF \parallel MC$ $$CF=\frac{FK}{\sin{\angle FCM}}=\frac{AL}{\sin{\angle MCB}}=\frac{\frac{[ABC]}{MC}}{\sin{\angle MCB}}=\frac{BC \cdot CM \cdot \sin{\angle MCB}}{MC \sin{\angle MCB}}=BC$$Also by $\triangle BMC \cap D \simeq \triangle MXC \cap N$: $$CX=\frac{CM^2}{BC}$$So: $$CX \cdot CF=\frac{CM^2}{BC} \cdot BC=CM^2$$Hence $CM$ is tangent to the circle
01.02.2018 21:40
sbealing wrote: For $(a)$, Let $CX \cap \omega=F \neq C$. Let the feet of the perpendiculars from $F,A$ to $CM$ be $K,L$ respectively. $$\measuredangle AFC=\measuredangle AFX=\measuredangle AMX=\measuredangle AMC-\measuredangle XMC=\measuredangle CXM-\measuredangle XMC=\measuredangle MCX=\measuredangle MCF$$So $AF \parallel MC$ $$CF=\frac{FK}{\sin{\angle FCM}}=\frac{AL}{\sin{\angle MCB}}=\frac{\frac{[ABC]}{MC}}{\sin{\angle MCB}}=\frac{BC \cdot CM \cdot \sin{\angle MCB}}{MC \sin{\angle MCB}}=BC$$Also by $\triangle BMC \cap D \simeq \triangle MXC \cap N$: $$CX=\frac{CM^2}{BC}$$So: $$CX \cdot CF=\frac{CM^2}{BC} \cdot BC=CM^2$$Hence $CM$ is tangent to the circle Good job
04.08.2024 00:10
$\textbf{(a)}$ Let, $CX \cap \omega \equiv Y$ and $CM \cap BY \equiv Z$ $\color{green} \textbf{Claim 1 :}$ $BC=CY$ $\textbf{Proof :}$ $$\angle ZMA= \angle BMC= \angle MXC= 180 -\angle YAM \implies AY \parallel CM\equiv CZ$$But $M$ is the midpoint of $AB$ and $MZ \parallel AY \implies Z$ is the midpoint of $BY$ Also we have $\angle BCZ =\angle ZCY \implies BC=CY \square$ $\color{green} \textbf{Claim 2 :}$ $CM^2= CX.CY$ $\textbf{Proof :}$ We have $$\triangle BCM \sim \triangle MCX \implies CM^2=CX.BC=CX.CY\square$$ Hence $CM$ is tangent to $\omega \blacksquare$ $\textbf{(b)}$ Let $P$ be midpoint of $BC$ and $AC \cap \omega \equiv J$ then $\angle MAJ= \angle BMP =\angle MXN \implies N,X,J$ are collinear $\blacksquare$