Problem

Source: Tuymaada 2007, Problem 6

Tags: geometry, perpendicular bisector, geometry proposed



Point $ D$ is chosen on the side $ AB$ of triangle $ ABC$. Point $ L$ inside the triangle $ ABC$ is such that $ BD=LD$ and $ \angle LAB=\angle LCA=\angle DCB$. It is known that $ \angle ALD+\angle ABC=180^\circ$. Prove that $ \angle BLC=90^\circ$.