Problem

Source:

Tags: combinatorics, graph theory



Finite number of $2017$ units long sticks are fixed on a plate. Each stick has a bead that can slide up and down on it. Beads can only stand on integer heights $( 1, 2, 3,..., 2017 )$. Some of the bead pairs are connected with elastic bands. $The$ $young$ $ant$ can go to every bead, starting from any bead by using the elastic bands. $The$ $old$ $ant$ can use an elastic band if the difference in height of the beads which are connected by the band, is smaller than or equal to $1$. If the heights of the beads which are connected to each other are different, we call it $valid$ $situation$. If there exists at least one $valid$ $situation$, prove that we can create a $valid$ $situation$, by arranging the heights of the beads, in which $the$ $old$ $ant$ can go to every bead, starting from any bead.