Problem

Source:

Tags: combinatorics



A wedding is going to be held in a city with $25$ types of meals, to which some of the $2017$ citizens will be invited. All of the citizens like some meals and each meal is liked by at least one person. A "$suitable$ $list$" is a set of citizens, such that each meal is liked by at least one person in the set. A "$kamber$ $group$" is a set that contains at least one person from each "$suitable$ $list$". Given a "$kamber$ $group$", which has no subset (other than itself) that is also a "$kamber$ $group$", prove that there exists a meal, which is liked by everyone in the group.