Problem

Source:

Tags: geometry



Let $ABCD$ be a quadrilateral such that line $AB$ intersects $CD$ at $X$. Denote circles with inradius $r_1$ and centers $A, B$ as $w_a$ and $w_b$ with inradius $r_2$ and centers $C, D$ as $w_c$ and $w_d$. $w_a$ intersects $w_d$ at $P, Q$. $w_b$ intersects $w_c$ at $R, S$. Prove that if $XA.XB+r_2^2=XC.XD+r_1^2$, then $P,Q,R,S$ are cyclic.