Problem

Source: USA Winter Team Selection Test #2 for IMO 2018, Problem 1

Tags: combinatorics, TST



Let $n$ be a positive integer and let $S \subseteq \{0, 1\}^n$ be a set of binary strings of length $n$. Given an odd number $x_1, \dots, x_{2k + 1} \in S$ of binary strings (not necessarily distinct), their majority is defined as the binary string $y \in \{0, 1\}^n$ for which the $i^{\text{th}}$ bit of $y$ is the most common bit among the $i^{\text{th}}$ bits of $x_1, \dots,x_{2k + 1}$. (For example, if $n = 4$ the majority of 0000, 0000, 1101, 1100, 0101 is 0100.) Suppose that for some positive integer $k$, $S$ has the property $P_k$ that the majority of any $2k + 1$ binary strings in $S$ (possibly with repetition) is also in $S$. Prove that $S$ has the same property $P_k$ for all positive integers $k$. Proposed by Joshua Brakensiek