Problem

Source: European Mathematical Cup Junior 2017,P4.

Tags: inequalities



The real numbers $x,y,z$ satisfy $x^2+y^2+z^2=3.$ Prove that the inequality $x^3-(y^2+yz+z^2)x+yz(y+z)\le 3\sqrt{3}.$ and find all triples $(x,y,z)$ for which equality holds.