Problem

Source: IMO Shortlist 2006, Combinatorics 3, AIMO 2007, TST 6, P2

Tags: algebra, polynomial, probability, expected value, Probabilistic Method, IMO Shortlist



Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 - x)^{b(P)}} = 1,\] where the sum is taken over all convex polygons with vertices in $ S$. Alternative formulation: Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A -$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A -$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial \[ P_A(x) = x^{|A|}(1 - x)^{r(A)}. \] Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) = 1.$ Proposed by Federico Ardila, Colombia