Problem

Source: St Petersburg Olympiad 2014, Grade 9, P5

Tags: combinatorics, geometry



On a cellular plane with a cell side equal to $1$, arbitrarily $100 \times 100$ napkin is thrown. It covers some nodes (the node lying on the border of a napkin, is also considered covered). What is the smallest number of lines (going not necessarily along grid lines) you can certainly cover all these nodes?