Points $A,B$ are on circle $\omega$. Points $C$ and $D$ are moved on the arc $AB$, such that $CD$ has constant length. $I_1,I_2$ - incenters of $ABC$ and $ABD$. Prove that line $I_1I_2$ is tangent to some fixed circle.
Source: St Petersburg Olympiad 2014, Grade 9, P6
Tags: geometry, incenter
Points $A,B$ are on circle $\omega$. Points $C$ and $D$ are moved on the arc $AB$, such that $CD$ has constant length. $I_1,I_2$ - incenters of $ABC$ and $ABD$. Prove that line $I_1I_2$ is tangent to some fixed circle.