$a_1\geq a_2\geq... \geq a_{100n}>0$ If we take from $(a_1,a_2,...,a_{100n})$ some $2n+1$ numbers $b_1\geq b_2 \geq ... \geq b_{2n+1}$ then $b_1+...+b_n > b_{n+1}+...b_{2n+1}$ Prove, that $$(n+1)(a_1+...+a_n)>a_{n+1}+a_{n+2}+...+a_{100n}$$
Source: St Petersburg Olympiad 2014, Grade 10, P4
Tags: algebra, inequalities
$a_1\geq a_2\geq... \geq a_{100n}>0$ If we take from $(a_1,a_2,...,a_{100n})$ some $2n+1$ numbers $b_1\geq b_2 \geq ... \geq b_{2n+1}$ then $b_1+...+b_n > b_{n+1}+...b_{2n+1}$ Prove, that $$(n+1)(a_1+...+a_n)>a_{n+1}+a_{n+2}+...+a_{100n}$$