Problem

Source: 2018HKTST2P1

Tags: geometry, circumcircle



Let $ABC$ be a triangle with $AB=AC$. A circle $\Gamma$ lies outside triangle $ABC$ and is tangent to line $AC$ at $C$. Point $D$ lies on $\Gamma$ such that the circumcircle of triangle $ABD$ is internally tangent to $\Gamma$. Segment $AD$ meets $\Gamma$ secondly at $E$. Prove that $BE$ is tangent to $\Gamma$